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SUMMARY

In this paper a high-fidelity aerodynamic model is presented for use in parametric studies of weapon aero-
dynamics. The method employs a reduced-order model obtained from the proper orthogonal decomposition
(POD) of an ensemble of computational fluid dynamics (CFD) solutions with varying parameters. This
decomposition produces an optimal linear set of orthogonal basis functions that best describe the ensemble
of numerical solutions. These solutions are then projected onto this set of basis functions to provide a
finite set of scalar coefficients that represent the solutions. A pseudo-continuous representation of these
projection coefficients is constructed, which allows predictions to be made of parameter combinations not
in the original set of observations. The paper explores the performance of a few design-of-experiment
approaches for the generation of the initial ensemble of computational experiments. Response surface
construction methods based on parametric and non-parametric models for the pseudo-continuous represen-
tation of the projection coefficients are also evaluated. The model has been applied to two-flow problems
related to high-speed weapon aerodynamics, inviscid flow around a flare-stabilized hypersonic projectile
and supersonic turbulent flow around a fin-stabilized projectile with drooping nose control. Comparisons
of model predictions with high-fidelity CFD simulations suggest that the POD provides a reliable and
robust approach to the construction of reduced-order models. The practicality of the model is shown to
be sensitive to the technique used to generate the ensemble of observations from which the model is
constructed, while the accuracy of the approach depends on the pseudo-continuous representation of the
projection coefficients. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The design of modern air-vehicles is a complex process that requires the successful integration
of numerous disparate disciplines, for example propulsion, aerodynamics, structural mechanics
and flight mechanics. The inter-disciplinary nature of the problem is such that assessing the
performance of an individual configuration using high-fidelity analysis tools is expensive and
frequently severely limits the extent to which the design space can be explored during the
development cycle. To overcome these limitations, it is a common practice to either degrade
the analysis model (for example solving Euler equations instead of Navier–Stokes equations to
obtain the aerodynamics) or restrict the design space. The former has clear implications for
modelling fidelity, while the latter, which relies on engineering judgment, may lead to sub-optimal
designs.

An alternative approach is the use of meta-modelling strategies that attempt to construct a
pseudo-closed-form model from the output of the high-fidelity analysis tool at discrete points in
the design space. The meta-model is then used as a low-cost surrogate for the original analysis
tool within the multi-disciplinary framework. In the context of aerodynamic simulations a number
of meta-modelling approaches have been proposed, see for example the review of Vavalle [1].
However, the majority of such approaches simply provide models for individual design target
functions, such as integrated forces and moments, rather than for the full flowfield output of the
analysis tool.

In this work a meta-model of a computational fluid dynamics (CFD) tool, Cranfield University’s
IMPNS space-marching solver, is presented. The method employs a reduced-order model based
upon the properties of proper orthogonal decomposition (POD) [2] to characterize an ensemble
of computational experiments. The reduced-order model is adapted for predictions through the
construction of a response surface of the projection coefficients that span the parametric space
of interest.

The model is applied to two problems related to high-speed weapon aerodynamics. The first
concerns inviscid flow over the axi-symmetric flare stabilized projectile studied by Schmidt
et al. [3] and Plostins et al. [4]. This test case was selected as it is the one for which existing
semi-empirical modelling tools perform poorly and therefore poses a reasonable challenge to the
currently proposed approach. The configuration is studied for a parameter space that involves
changes to both the free-stream conditions (Mach number and incidence) and geometry (base
radius). The results of the study are used to demonstrate the effectiveness of POD as a reduced-order
model for weapon aerodynamics at supersonic and hypersonic Mach numbers. For this problem
the relative performances of elements of the model, for example the sampling technique and the
choice of pseudo-continuous surface representation, are also explored.

The second problem relates to a more complex configuration investigated experimentally by
Landers et al. [5] and computationally by Shoesmith et al. [6]. This configuration consists of a 4
calibre 0.7 power series nose with a 19.5 calibre cylindrical section with 8 stabilizing fins. The
nose is free to rotate providing a means of control. The fluid dynamics of this configuration is
complex involving oblique shocks, boundary layers and vortices and their interactions. For this
case two parameters, the nose deflection in the pitch plane and the flow angle of attack, were
varied, and the ability of the model to predict not only the forces and moments but also flow-field
information was explored.

The results presented in this paper demonstrate how a small number of CFD solutions can be
used together with POD to generate aerodynamic data with low cost and high accuracy.
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2. NUMERICAL METHODS

2.1. CFD model

The objective of this work was to obtain a high-fidelity low-cost surrogate of a CFD analysis tool,
namely the IMPNS flow solver [7, 8]. The IMPNSsoftware has been developed to provide a practical
flow solver (rapid, robust and accurate) for problems in high-speed external weapon aerodynamics.

IMPNS provides algorithms for the solution of the Euler, Thin-layer or Parabolized Navier
Stokes equations together with a range of turbulence closures that includes the algebraic model of
Baldwin and Lomax [9] enhanced with modifications due to either Degani and Schiff [10] or Qin
and Jayatunga [11], variants of the one-equation model of Spalart and Allmaras [12] and Wilcox’s
two-equation k-� model [13]. The turbulence closure is coupled with the mean flow equations in
a segregated fashion.

The governing equations are formulated for a finite control volume and solved using an implicit
space marching procedure. For flows in which there is no upstream influence, a single sweep is
employed starting at the nose of the configuration and proceeding in the stream-wise direction.
The approach has been extended to allow for flows with upstream influence, for example blunt
body flows and flows exhibiting axial separation. In this case a multi-sweep procedure in which
the solver marches backwards and forwards is employed to capture the elliptic characteristics of
the governing equations. A combination of single sweep and multi-sweep strategies can be used
to solve for flows that contain embedded regions of flow where upstream influence is important.

IMPNS provides a number of schemes that can be employed in the spatial discretization, see for
example Qin and Ludlow [14]. In the present calculations, the spatial discretization is performed
using an approximate Riemann solver based on the work of Osher and Solomon [15] together
with a central difference-based scheme for the viscous fluxes. An implicit system of equations
arises at each marching plane following the spatial discretization. This system is solved using a
relaxation approach in which an additional pseudo-time derivative is added to the steady governing
equations. The implicit system is then solved by marching to the steady state in pseudo-time.
Convergence of the pseudo-time relaxation is accelerated through the use of a combination of an
implicit Newton–Krylov method [16] and full multi-grid [17].

IMPNS uses standard structured multi-block grids. To provide geometric flexibility and to reduce
computational expense, non-matching block faces are permitted in the stream-wise direction. This
permits changes of grid topology in the stream-wise direction, allowing the grid to conform to
the geometric characteristics of the configuration being studied. IMPNS has been used extensively
to study the aerodynamics of high-speed weapon configurations with remarkable success; further
details of its development and application can be found in references [18–24].
2.2. Meta-model

The meta-model consists of three main elements: a technique for sampling the parameter space
using a design-of-experiment approach, a reduced-order model that can be used to represent the
dominant dynamical characteristics of the system described by a set of discrete observations at the
sample points and a pseudo-continuous representation of the scalar coefficients obtainable from
the reduced-order model.

2.2.1. The reduced-order model: POD. In fluid mechanics the POD was first introduced by Lumley
[25] in the context of stochastic turbulence. The same procedure has been widely used in other
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disciplines and is commonly referred to as the Karhunen–Loéve expansion and the principal
component analysis. POD is also very closely related to the singular value decomposition (SVD).
The method provides a foundation for the modal decomposition of a system of functions, usually
data obtained from either experiments or numerical simulations. The resulting basis functions are
called proper orthogonal modes and are the best possible uncorrelated and data-dependent linear
set of basis functions that describe the initial observations.

The POD method has been used extensively in the fields of random variables, image processing,
data compression and system controls. In the field of fluid dynamics, it has been used in unsteady
flow problems such as aero-elasticity and stochastic turbulence to capture the variation in time of
fluid flow. Less frequent is the use and development of reduced-order models to capture parametric
variations. Epureanu et al. [26] employed POD to develop reduced-order models for potential flow
in turbo-machinery with sampling over a range of inter-blade phase angles and time. The resulting
models were applied to flows at varying Mach numbers, even though the observational ensemble
was computed at a single Mach number and accurate results were obtained at Mach numbers
close to that used in the initial observations. LeGresley and Alonso [27] used POD to develop
surrogate models of a 2D Euler solver for design optimization purposes. In this case the POD
modes spanned a range of aerofoil geometries. More recently, Bui-Thanh et al. [28] employed the
POD method together with an interpolation procedure to predict the pressure flow-field over an
aerofoil for varying inflow Mach number and angle of attack.

The POD procedure is most of the time described using the calculus of variations applied to
a multi-dimensional spatio-temporal data set. In such problems, the data set is produced from
solution vectors obtained at a particular instant of time. In this paper, the POD is described for
steady-state problems in terms of the SVD. Although these two approaches are equivalent, the
SVD approach is preferred as it is more straightforward.

Considering an ensemble of data A(Y(x)) where A∈Rmxn is obtained from the solutions Y(x)
of a high-fidelity model at various design points x(1),x(2), . . . ,x(m) where Y∈Rn represents the
solution vector of primitive or conservative field variables and x∈Rr represents the vector of
different design variables or parameters, the ensemble of data is formed as follows:

A(Y(x))=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y(x(1))

Y(x(2))

...

Y(x(m))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where Y(x(i))={Y1(x(i)),Y2(x(i)), . . . ,Yn(x(i))}, n is the number of grid points over which the
computational calculation is performed and m is the number of realizations or parameters’ combi-
nation.

The sub-space spanned by these solutions can be used to approximate Y by representing it in
terms of orthogonal basis functions or vectors U that span the parameter space of interest.

U=span{Y(x(1)),Y(x(2)),Y(x(3)), . . . ,Y(x(m))} (2)

In POD each realization or solution vector is referred to as a snapshot.
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The objective of the POD is to obtain a set of m optimal basis vectors that span the subspace
formed by m snapshots. In this context the snapshots are obtained for different values of the
parameters, so that the solution at a particular parameter can be reconstructed as

Y=〈Y〉+
m∑
i=1
aiUi (3)

where 〈Y〉=1/m
∑m

i=1Y(x(i)) is the arithmetic mean of the vector of field variables at each grid
point across the whole set of snapshots, Ui , i=1,2, . . . ,m denotes the set of basis vectors at
a particular grid point and ai , i=1,2, . . . ,m are scalar coefficients to be determined. Hence a
snapshot can be reconstructed by adding up the contribution from each basis vector in turn at each
grid point.

Defining a set of modified snapshots obtained by subtracting 〈Y〉 from Y(x(i)),

Ỹ(i) =Y(x(i))−〈Y〉, i=1,2, . . . ,m (4)

where m is total number of snapshots.
Let A∈Rmxn denote the matrix whose rows are the modified snapshots. Each snapshot is

constructed by placing in order the solution at each grid point for the whole grid. This order can
be determined arbitrarily, but is subject to the constraint that it must be consistent throughout the
whole set of snapshots.

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ỹ (1)
1 . . . Ỹ (1)

n

Ỹ (2)
1 . . . Ỹ (2)

n

Ỹ (3)
1 . . . Ỹ (3)

n

· . . . ·

Ỹ (m)
1 . . . Ỹ (m)

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

The SVD of A can be written as

A=URVT (6)

where U∈Rmxm and V∈Rnxn are orthogonal matrices. These matrices are the left and right
singular vectors, respectively. R∈Rmxn is a diagonal matrix whose diagonal elements consist of
q=min(m,n) non-negative numbers �i arranged in decreasing order; that is,

�1��2��3� · · ·��q
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�i are referred to as the singular values of A, hence the name SVD. In expanded matrix form the
SVD of A can be expressed as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ỹ (1)
1 . . . Ỹ (1)

n

Ỹ (2)
1 . . . Ỹ (2)

n

Ỹ (3)
1 . . . Ỹ (3)

n

· . . . ·
Ỹ (m)
1 . . . Ỹ (m)

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u11 . . . u1m

u21 . . . u2m

u31 . . . u3m

· . . . ·
um1 . . . umm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1 0 0 0 0 0 · 0

0 �2 0 0 0 0 · 0

0 0 �3 0 0 0 · 0

· · · · · · · ·
0 0 0 0 �m 0 · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11 . . . v1n

v21 . . . v2n

v31 . . . v3n

· . . . ·
· . . . ·
· . . . ·

vn1 . . . vnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This is the full form of the SVD. Since R is a diagonal m×n matrix, then the above matrix
equation can be written in reduced form as follows if we assume that m<n:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ỹ (1)
1 . . . Ỹ (1)

n

Ỹ (2)
1 . . . Ỹ (2)

n

Ỹ (3)
1 . . . Ỹ (3)

n

· . . . ·
Ỹ (m)
1 . . . Ỹ (m)

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u11 . . . u1m

u21 . . . u2m

u31 . . . u3m

· . . . ·
um1 . . . umm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1 0 0 · 0

0 �2 0 · 0

0 0 �3 · 0

· · · · ·
0 0 0 · �m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v11 . . . v1n

v21 . . . v2n

v31 . . . v3n

· . . . ·
vm1 . . . vmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where the matrices R and VT are reduced in size. The columns of V and hence the rows of VT

are the proper orthogonal modes of the system. Hence the set of basis vectors Ui =VT(i, :)∈Rn .
These basis vectors are of unit magnitude and orthogonal, hence orthonormal.
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Writing the product of U and R as a matrix [�i j ]⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ỹ (1)
1 . . . Ỹ (1)

n

Ỹ (2)
1 . . . Ỹ (2)

n

Ỹ (3)
1 . . . Ỹ (3)

n

· . . . ·
Ỹ (m)
1 . . . Ỹ (m)

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�11 . . . �1m

�21 . . . �2m

�31 . . . �3m

· . . . ·
�m1 . . . �mm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v11 . . . v1n

v21 . . . v2n

v31 . . . v3n

· . . . ·
vm1 . . . vmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(7)

which has the form of Ỹ (i)
k =∑m

j=1 �i jv jk . Thus, the scalar coefficients are obtained directly from
the multiplication of U and R. From the SVD of A it can be noticed that since V is an orthogonal
matrix, the transpose of V is equal to its inverse i.e. VT=V−1, therefore

AV=UR (8)

that is,

�i j = Ỹ(i) ·U j (9)

where U j =V(:, j)∈ Rn . The scalar coefficients �i j are also referred to as projection coefficients
because these are obtained by projecting the solution onto the basis vectors. A complete recon-
struction of the snapshots can be obtained from

Y=〈Y〉+Ỹ (10)

Now, Y may represent a vector of scalar functions such as the primitive or conservative variables
and therefore the method described can be applied to each variable in turn to form a distinct basis
for each variable. However, an improvement in the ability of the basis to represent the system
may be achieved by considering not only how the individual variables vary from one snapshot to
another but also how variables change relative to one another. Hence Y is developed from state
variable vectors consisting of all the primitive or conservative variables [27]. In this case, the POD
modes are sensitive to the scaling of the flow variables as these are in different units and have
significantly varying magnitudes. Consequently, appropriate scaling factors are necessary for each
fluctuating flow variable that makes their magnitude of the same order [29].

If a problem is represented by a suitable number of snapshots from which a suitably rich set of
basis vectors is available, the singular values become small rapidly and a small number of basis
vectors are adequate to reconstruct and approximate the snapshots. In this way, POD provides
an efficient means of capturing the dominant features of a multi-degree of freedom system and
representing it to the desired precision by using the relevant set of modes, thus reducing the order of
the system. In other words, the reduced-order model is derived by projecting the CFD model onto
a reduced space spanned by only some of the proper orthogonal modes or POD eigenfunctions.

Assuming that p modes that correspond to the largest p singular values are dominant, then the
energy E or variance in the data captured by the first p modes can be computed as

E(p)=
∑i=p

i=1 �2i∑i=m
i=1 �2i

(11)
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If this energy is high say over 99% of the total energy, then p modes are adequate to capture the
principal features and approximately reconstruct the data set. Thus, a reduced subspace is formed
that is only spanned by p modes.

Instead of the SVD approach, the proper orthogonal modes can also be computed by solving
for the largest p eigenvalues and corresponding eigenvectors of the matrix K=ATA∈Rnxn where
ATA=VR2VT. Hence it follows that V is the matrix of eigenvectors of K and �2i , i=1,2, . . . ,m,
are its eigenvalues. For cases wherem�n, instead of using the SVD procedure, it is computationally
more efficient to use the ‘method of snapshots’ proposed by Sirovich [30]. In this approach anm×m
eigenvalue problem AATU=R2U is formed, from which U is computed. Hence, pre-multiplying
by UT Equation (6) we get UTA=RVT. Therefore, the first m rows of UTA normalized to unit
magnitude represent the proper orthogonal modes.

When the domain between snapshots is different, that is there exists a geometrical change
between snapshots, the modes derived from the snapshots will no longer remain at fixed places
within the computational domain and consequently an error is introduced in this modelling tech-
nique being a space-index transformation. One approach to this problem is to use a common
domain for every snapshot and apply transpiration boundary conditions to account for the changes
in the boundary. However, in this work the method as suggested and adopted by LeGresley and
Alonso [27] has been adopted.

Using this model reduction technique, a low-dimensional system is produced that has the same
essential characteristics as the original system but with far less storage requirements and a much
lower evaluation time.

2.2.2. Pseudo-continuous representation. The use of reduced-order models based upon the POD
for prediction requires the transformation of the projection coefficients, �i , from the discrete sample
space for which they have been computed to a continuous space. If �i varies as a smooth function
with the change in parameters, then a meta-model may be used to determine the POD projection
coefficients at intermediate parametric values not included in the original data ensemble. The
predicted solution vector Y(x(�)) for any variable � within the parametric space is given by

Y(x(�))=〈Y〉+
p′∑
i=1

��
i Ui (12)

where p′ is normally greater than p and the weighting coefficients ��
i are found using the meta-

model.
A variety of meta-modelling techniques suitable for this purpose are described in the literature

of which the response surface methodology (RSM) has found general acceptance. The RSM
is a statistical tool originally developed for experimental design and subsequently adapted to
approximate computational simulations. The RSM is founded on the assumption that the data can
be described by a set of simple basis functions, such as second-order polynomials, that are fitted
to the data ensemble using a least-squares regression technique.

While regression techniques work well for experimental data, where noise due to random errors
is smoothed out from the data, they are less appropriate when dealing with the results from
deterministic numerical simulations or when working with complex data sets. Of particular concern
in the context of the present work are two problems: first that the response surface constructed
using regression analysis may not exactly fit the sample data from which it has been constructed
and second that the method smoothes local variations in the data.
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To investigate and understand these problems, further three parametric/non-parametric meta-
models were also explored, spline interpolation methods and radial basis functions (RBFs). In the
latter case multi-quadric, polyharmonic and gaussian kernels were considered. All these models
produce an interpolative fit through all of the sample points and provide improved representations
of data sets that have localized minima and maxima.

2.2.2.1. Response surface construction methods

A. Linear regression models: Given a set of data points x(i) ∈Rr where i=1, . . . ,m and the corre-
sponding function values f (x(i)), a global approximation function f̃ (x(i)) can be obtained
by considering a second-order polynomial as a model such as

f̃ (x(i))=c0+
r∑

i=1
ci xi +

r∑
i=1

cii x
2
i +

r∑
i=1

r∑
j=1
j �=i

ci j xi x j (13)

where the c’s are unknown coefficients determined by the least-squares approach. In this
case the function values f (x(i)) are the scalar coefficients �i obtained by projecting the
expensive solution onto the proper orthogonal modes. The response surface equation can
then be used to determine the projection coefficients at any arbitrary parameter values. This
technique is generally inadequate in providing a globally accurate representation because of
its smoothing effect; hence, interpolating models were also considered.

B. Interpolating models: Generally, an interpolating model satisfies the following condition:

f̃ (x (i))= f (x (i)), i=1, . . . ,m (14)

which shows that the function and the approximation are equal at all data points. Two
different interpolating methods were considered.

(i) Spline interpolation: In spline interpolation, the interpolant is a special type of piecewise
polynomial referred to as a spline. Spline interpolation requires that the data points will
be on a grid-like pattern.

(a) Linear spline interpolation: This is equivalent to a piecewise linear interpolation
where the data points are connected with straight lines.

(b) Cubic spline interpolation: In cubic spline interpolation, a cubic polynomial is used
in each interval between two consecutive data points. One cubic polynomial has
four coefficients to be determined, hence requires four conditions. Two of these are
obtained from the data points at each end of the interval. The other two are obtained
from the requirement that the first and second derivatives of the polynomial become
continuous across each data point, hence obtaining a smooth curve.

(ii) Radial basis functions: An RBF [31] is a real-valued function whose value depends on
the Euclidean distance from some point called a centre. RBFs are typically used to build
up function approximation of the form

f̃ (x)= p(x)+
N∑
i=1

wi�(‖x−xi‖) (15)

where the approximating function f̃ (x) is represented as a sum of N RBFs �, each
associated with a different centre xi and weighted by an appropriate coefficient wi .p(x)
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is a polynomial of one degree less than the RBF and is included to ensure a unique
solution for the weight vector. Thus, an RBF is a weighted sum of translations of a
radially symmetric basis function augmented by a polynomial term. In particular RBFs
are suitable for interpolating scattered data and hence do not require the data to lie on
any sort of regular grid for most types.

Typical RBFs are

(i) Gaussian �(r)=e−r/�2

(ii) multi-quadric [31, 32] �(r)=
√
1+r/�2 and

(iii) polyharmonics such as the triharmonic �(r)=r3

The constant � in (i) and (ii) is called the shape parameter. The RBF interpolant f̃ (x) is defined by
the coefficients of the polynomial p(x) and the weightswi . Since this produces an under-determined
system, the orthogonality condition

N∑
j=1

w j p(x j )=0 (16)

is further imposed on the coefficients w=(w1, . . . ,wN ).
Let P=(p1, . . . , pl) be a basis for the polynomial and let c=(c1, . . . ,cl) be the coefficients that

give P in terms of this basis. Then Equations (14) and (16) may be written in matrix form as(
W P

PT 0

)(
w

c

)
=
(
f

0

)
(17)

where

W=

⎛
⎜⎜⎜⎜⎜⎝

�(0) �(‖x2−x1‖) · · · �(‖xN −x1‖)
�(‖x1−x2‖) �(0) · · · �(‖xN −x2‖)

...
...

...
...

�(‖x1−xN‖) �(‖x2−xN‖) · · · �(0)

⎞
⎟⎟⎟⎟⎟⎠

and Pi, j = p j (xi ), i=1, . . . ,N , j =1, . . . , l. Solving Equation (17) determines c and w, hence
f̃ (x).

2.2.3. Sampling methods. In the development of a meta-model, the location of sample points
within the parametric space has an important influence on both the cost of constructing the model
and on the accuracy of model predictions. In this work we have investigated the performance of two
different sampling strategies; the full factorial and the Latin Hyper-Cube design-of-experiments.

The full factorial design-of-experiment uniformly samples the design parameters across the
whole parameter space of interest. This technique while easy to implement is expensive requiring∏n

i=1mi +1 samples where mi is the number of intervals used to resolve the individual parameters
and n is the number of parameters. This number can become excessively large for even a modest
number of design parameters.
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In an effort to overcome the curse of dimensionality, a number of alternative sampling techniques
have been proposed. In the Latin Hyper-Cube design sampling (LHS), each parameter range is
divided into m intervals or bins of equal probability. This leads to a total of mn bins in the
whole space. Subsequently, m samples are generated such that for each parameter, when a one-
dimensional projection is taken, there will be only one sample in each bin. The LHS algorithm
produces samples as follows:

x (i)
j = �(i)

j +	(i)
j

m
∀1� j�n, 1�i�m (18)

where m is the number of samples, 	∈[0,1] is a random number and � is an independent random
number permutation. The subscript denotes the parameter number and the superscript in brackets
denotes the sample number. From each parameter, one of the points on the interval is selected
randomly and the response is evaluated. This is done until all points are used up. This method is
useful because there is no correlation between parameters and the samples are chosen randomly.
However, the space-filling characteristics produced using the standard LHS are not guaranteed to
be optimal. In an effort to provide an optimal LHS design, the algorithm is modified using the
approach of Audze and Englais [33]. In their approach a mn grid is first generated and then the
sample points are placed so that no two points lie along the same grid line and the metric,

n∑
i=1

n∑
j=i+1

1

d2i j
(19)

is minimized. In Equation (19) di j is the Euclidean distance between points i and j . In order to
ensure that each point generated is placed in the centre of its bin, a lattice sampling technique is
adopted in which the value of 	 is set equal to 0.5.

3. RESULTS

The model developed in the preceding sections is demonstrated for the two aerodynamic problems
presented in the introduction that are a flare-stabilized projectile and a fin-stabilized missile with
nose control.

3.1. Flare-stabilized projectile

In this section the utility of POD as a means of obtaining reduced-order models is demonstrated
using the example of inviscid steady flow about an axi-symmetric flare-stabilized projectile. For this
case parametric variation of both flow condition (Mach number) and geometry (flare base radius)
were considered. The Mach number range [4.0, 6.0] was divided into 20 uniform intervals, while
the non-dimensionalized flare base radius r/D range [0.75, 1.25] was divided into 10 uniform
intervals. The full factorial design-of-experiment was employed to generate the sample points
resulting in an ensemble containing a total of 231 snapshots.

Figure 1 shows the geometry of the projectile with maximum and minimum flare angles, while
Figure 2 shows an example of the grid on which the axi-symmetric inviscid computations were
performed.
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Figure 1. Geometry of the axi-symmetric projectile: (a) r/D=1.25 and (b) r/D=0.75.

Figure 2. Two-dimensional grid with 41×101 grid points used for the Euler computations at r/D=1.25.

3.1.1. Reduced-order modelling. The POD method was applied to the resulting data set and a
model containing 231 basis vectors was obtained. This model was used to reconstruct the solution
at a Mach number of 4.0 and a flare base radius of r/D = 0.75. The results are summarized in
Figures 3–5. Figure 3 shows the variation of the energy defined in Equation (11) captured by the
POD modes for each of the primitive variables against the number of POD modes. It is evident
that most of the energy (99.9%) is captured within the first few modes, indicating that the data set
is rich enough to capture the flow details.

While the energy captured by a given set of basis functions provides some understanding of the
relative accuracy of the model, the actual error remains unknown. This quantity can be quantified
by comparing the original sample data with that generated by the reduced-order model. In this
example an assessment is made by determining the percentage variation of the root mean square
value of the global error in the whole flow field for each of the primitive variables as it varies with
the number of POD modes. The biggest error was registered by the cross-flow v-velocity. For this
case the percentage root mean square global error in the whole flow field reduces to approximately
0.1% when using only 60 of the 231 available POD modes (Figure 4).

Figure 5 illustrates this more clearly by comparing static pressure contours obtained from the
reduced-order model using 1, 15 and 35 POD modes with those of the original Euler computation.
A comparison of the normalized static pressure distribution at the outflow is also included. The
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Figure 3. Percentage energy captured for each of the primitive variables versus the number of POD modes.
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Figure 4. Global RMS % Error for each of the primitive variables versus the number of POD modes.

static pressure is normalized by the free-stream pressure. Using a single POD mode, the main
flow features, the conical shock at the nose and the compression over the flare, are reasonably
represented though there is significant disagreement in the outflow pressure distribution. For one
single POD mode, the RMS global error in the whole static pressure flow field is 4.0%. With 15
modes considerable improvements are obtained. The conical shock is now essentially identical to
that of the Euler computation, while the detail of the compression is much better represented than
with just one mode. In this case, small discrepancies are noticeable in the pressure distribution at
the outflow. Further improvements are obtained with 35 POD modes, where the entire flow field is
now essentially identical to that obtained by solution of the Euler equations. This is also evident
from the outflow pressure distribution. The RMS global error within the whole static pressure field
is 0.03%.

A useful application of this technique is that of data compression. This is achieved by keeping
the most energetic POD modes while neglecting the rest without much loss of detail. Figure 6
shows pictorially this potential by making a direct comparison between the percentage RMS global
error in the cross-flow v-velocity field and the percentage effective data in use versus the number
of POD modes. With the consideration of only 10 POD modes and hence only 4.4% of the total
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Figure 5. Comparison of pressure contours at M=4.0 and r/D=0.75 obtained using the meta-model
(upper) and Euler computation (lower): (a) 1 POD mode; (b) 15 POD modes; and (c) 35 POD modes.
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Figure 6. Percentage of RMS Global Error in the cross-flow velocity and percentage of
data in use versus number of POD modes.

amount of data, the global RMS error in the cross-flow velocity field is 7.0%. By considering 100
POD modes and therefore using 43.4% of the total data, the RMS global error in the cross-flow
v-velocity field goes down to 0.01%. This shows that by using 43.4% of the data only, the solutions
can be reconstructed with very high accuracy. Thus, this methodology offers an effective and
valuable data management system for both data storage and handling by compressing the data.

3.1.2. Model predictions. Having established that the reduced-order model provides good means
for data reconstruction, attention was then directed to making model predictions. The scalar
coefficients obtained from the data ensemble used in the previous example were used together
with cubic splines to generate an interpolated response surface. The resulting model provides a
basis for computing the flow field at any Mach number and flare base radius encompassed within
the sampled space, but not co-incident with the generating data set parameters.

Figure 7 presents comparisons of the predicted pressure field contours with the Euler computation
for a Mach number of 5.37 and a base radius of r/D=1.25. The interpolation in this example
is one-dimensional, that is along the Mach numbers within the Mach number range as data exist
at this base radius. For this example, the behaviour with increasing number of POD modes is
similar to that of the previous case, with as few as 15 POD modes a reasonable representation
of the main flow features can be obtained, while increasing the number of POD modes leads to
successive improvements in the detail of the captured pressure variation. For this case, with 71 of
the 231 available POD modes resulted in a global RMS error in the pressure field of 0.012% when
compared with the high-fidelity solution. This compares with a typical global RMS error in the
pressure field of 0.0025% when the model is used to reconstruct a snapshot from the data set of
observations. Predictions in both parameters show similar behaviour. For a Mach number of 4.87
and a base flare radius of r/D=1.03, the use of 71 POD modes resulted in a global RMS error
between the POD model-predicted and Euler-computed pressure fields of 0.016%.

For the latter case, the influence of the number of samples in the initial ensemble on the model
predictions was also investigated. PODs employing 21, 11 and 5 samples at equal intervals to
discretize the Mach number range, corresponding to 231, 121 and 55 snapshots, respectively, were
studied. In an effort to isolate the effects of sample size, it was ensured that the predictions obtained
for individual ensembles were independent of the number of modes in the reduced model. This
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Figure 7. Comparison of pressure contours at M=5.37 and r/D=1.25 obtained using the meta-model
(upper) and Euler computation (lower): (a) 1 POD mode; (b) 15 POD modes; and (c) 71 POD modes.
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was typically obtained using 40% of the available POD modes. A strong relationship between the
sample size and error was found. For the smallest ensemble with 55 snapshots, the global RMS
error in the pressure field was found to be 0.68%, while for 121 and 231 snapshots the error
reduced to 0.15 and 0.016%, respectively.

3.1.3. Model predictions for three-dimensional flow. In an effort to understand more clearly the
relationship between the model prediction and the method used to obtain a pseudo-continuous
representation of the scalar coefficients, a second study was undertaken. For this case the parame-
ters of interest were extended to include incidence. The Mach number range [4.0,6.0] was divided
into 4 uniform intervals instead of the 20 used in the previous axi-symmetric study; the inci-
dence range [0.0◦,4.0◦] was also divided into 4 uniform intervals and the flare base radius range
[r/D=0.8,r/D=1.2] was divided using a further 4 intervals, instead of the 10 intervals used previ-
ously. The observations in this case were sampled according to a full factorial design-of-experiment
requiring a total of 125 evaluations of the IMPNS analysis code.

Predictions were made at two points in the parameter space, a point towards the centre of the
space (�=2.2◦, M=5.3, r/D=1.05) and a point close to the boundary of the sampled space
(�=0.7◦, M=4.2, r/D=0.85). In both cases none of the parameters of interest correspond to
values used to generate the ensemble of snapshots. The predictions obtained for each of the
modelling approaches (linear regression, linear spline interpolation, cubic spline interpolation and
a polynomial augmented multi-quadric RBF) are summarized in Table I. In this table, forces and
moments are presented that have been obtained by integrating the predicted surface pressures. The
reduced-order model used 40 out of the 125 available POD modes; increasing this number had no
significant effect on the predicted values.

The results suggest that of the methods considered, the response surface constructed using a
polynomial-augmented multi-quadric RBF is most effective. Surprisingly the linear regression,
which employs quadratic polynomials, performs no better than the linear spline interpolation. This
is attributed to the global nature of the regression analysis used to obtain the response surface
that appears to excessively smooth the computed coefficients. As the interpolation schemes pass
through the supporting data exactly, they provide a much better representation of local variations
in the data.

To confirm this hypothesis, the effects of data locality on the predictions obtained from the linear
regression-based model were investigated. In this case the parameters’ range was reduced in size
as shown in Table II. Each parameters’ range was discretized using two equal intervals resulting in
a total ensemble of 27 snapshots. By successively localizing the data-improved predictions were
obtained. This behaviour is attributed to improved representation of the local parametric variations
by the response surface rather than improvements in the reduced-order model.

3.1.4. Latin hyper-cube sampling. The use of parameter sampling techniques based upon the
full factorial design-of-experiment can be prohibitively expensive for problems involving large
numbers of parameters. To overcome this problem, sampling techniques based upon Latin Hyper-
Cube sampling were explored. In this approach a given number of samples are distributed in an
optimal manner within the parameter space, see Vavalle [1] for a more detailed discussion. Table
III presents results obtained using the Latin Hyper-Cube sampling. For this example the parameter
space considered was that with an angle of attack varying between [1◦,3◦], a Mach number between
[5.0,6.0] and a base flare radius r/D between 0.9 and 1.1. The parameter space was populated
using only 27 snapshots. Despite the limited number of snapshots considered, the achieved accuracy
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Table I. Comparison of model predictions with CFD simulations with various modelling strategies.

�=2.2◦, M=5.3, r/D=1.05 �=0.7◦, M=4.2, r/D=0.85

Meta-model CFD % Error Meta-model CFD % Error

Linear regression
Cx 0.3518 0.3536 0.51 0.1670 0.1658 0.72
Cz 0.2591 0.2580 0.43 0.0566 0.0570 0.70
Cm −2.7795 −2.7709 0.31 −0.4714 −0.4557 3.45
Xcp 10.7257 10.7414 0.15 8.3290 7.9985 4.13
Linear spline interpolation
Cx 0.3573 0.3536 1.05 0.1694 0.1658 2.17
Cz 0.2594 0.2580 0.54 0.0575 0.0570 0.88
Cm −2.7897 −2.7709 0.67 −0.4658 −0.4557 2.22
Xcp 10.7559 10.7414 0.13 8.1002 7.9985 1.27
Cubic spline interpolation
Cx 0.3526 0.3536 0.28 0.1682 0.1658 1.45
Cz 0.2575 0.2580 0.19 0.0572 0.0570 0.35
Cm −2.7644 −2.7709 0.23 −0.4616 −0.4557 1.29
Xcp 10.7345 10.7414 0.06 8.0715 7.9985 0.91
Polynomial augmented multi-quadric RBF
Cx 0.3537 0.3536 0.03 0.1660 0.1658 0.12
Cz 0.2579 0.2580 0.04 0.0570 0.0570 0.00
Cm −2.7702 −2.7709 0.03 −0.4570 −0.4557 0.29
Xcp 10.7402 10.7414 0.01 8.0197 7.9985 0.27

Table II. Effect of data localization on model predictions.

�=2.2◦, M=5.3, r/D=1.05

Parameters’ range Meta-model CFD % Error

�=[2◦,4◦], M=[5,6], r/D=[0.9D,1.1D] Cx 0.3542 0.3536 0.17
Cz 0.2556 0.2580 0.93
Cm −2.7266 −2.7709 1.60
Xcp 10.6681 10.7414 0.68

�=[2◦,4◦], M=[5,6], r/D=[1.0D,1.1D] Cx 0.3540 0.3536 0.11
Cz 0.2563 0.2580 0.66
Cm −2.7395 −2.7709 1.13
Xcp 10.6901 10.7414 0.48

�=[1◦,3◦], M=[5,6], r/D=[1.0D,1.1D] Cx 0.3540 0.3536 0.11
Cz 0.2575 0.2580 0.19
Cm −2.7611 −2.7709 0.35
Xcp 10.7230 10.7414 0.17

is better than that obtained for the examples presented earlier that used many more or the same
number of snapshots. This is evident from both response surface construction methods utilized in
this section. The prediction obtained from the polynomial-augmented multi-quadric RBF is highly
accurate.

For this particular example a meta-model of the individual-integrated forces, pitching moment
and centre of pressure was also developed by generating response surfaces for each property using
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Table III. Comparison of model predictions with CFD computations
using the Latin Hyper-Cube Sampling technique.

�=2.2, M=5.3, r/D=1.05

Model CFD % Error

Linear regression
Cx 0.3538 0.3536 0.06
Cz 0.2577 0.2580 0.12
Cm −2.7647 −2.7709 0.22
Xcp 10.7281 10.7414 0.12
Polynomial augmented multi-quadric RBF
Cx 0.3536 0.3536 0.00
Cz 0.2581 0.2580 0.04
Cm −2.7722 −2.7709 0.05
Xcp 10.7404 10.7414 0.01

Table IV. Comparison of an RSM-based meta-model for the
forces and moments with CFD computations.

�=2.2, M=5.3, r/D=1.05

Predicted CFD % Error

Linear regression
Cx 0.3536 0.3536 0.00
Cz 0.2577 0.2580 0.12
Cm −2.7645 −2.7709 0.23
Xcp 10.7282 10.7414 0.12

linear regression. This model was used to predict the forces, moment and centre of pressure at the
previous point. A comparison with computed data is presented in Table IV.

From Tables III and IV, it is evident that the two regression methods provide results that are
almost identical. While the evaluation of forces and moments from a meta-model of the individual-
integrated forces and moment data is less expensive than from the POD model based on the full
CFD output, the resulting information is limited to that in the model. In the case of the POD
model, any result that can be deduced from the CFD data can now be also deduced from the POD
model. This represents a significant advantage in many practical design situations.

From this section one can remark that the POD offers an effective reduced-order modelling
methodology. In addition when coupled with interpolation or regression methods, it provides a very
efficient means for making predictions. Interpolation-based response surface construction methods
provide a better representation of the local parametric variations, though local regression methods
provide improved representations than the global ones. Moreover the use of optimized sampling
techniques for populating the parametric space such as the LHS provides a practical approach to
reduce the number of samples required while achieving an improved accuracy.
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Figure 8. Nose controlled weapon configuration with a nose deflection of 8◦ and the computational grid
with approx. 1 million grid points.

3.2. Fin-stabilized projectile with drooping nose control

The second problem considered in the current study relates to supersonic turbulent flow around a
realistic weapon configuration. The configuration consists of a 0.7 power series nose followed by a
cylindrical body with eight stabilizing fins. The nose is free to rotate in the pitch plane, providing
a means of control. Figure 8 presents a visualization of the geometry and a typical grid for a nose
deflection of 8◦. Two parameters, the nose deflection and the flow angle of attack were varied.
The nose deflection was allowed to vary in the range [0◦,8◦], while the flow angle of attack was
varied in the range [0◦,6◦]. In this case a full factorial design-of-experiment was used to sample
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Table V. Comparison of model predictions with CFD simulations for 
=5◦ and �=1◦, �=3◦, �=5◦.


=5◦

�=1◦ �=3◦ �=5◦

Model CFD % Error Model CFD % Error Model CFD % Error

CSI
Cx 0.1864 0.1868 0.21 0.1904 0.1934 1.55 0.2034 0.2044 0.49
Cz 0.1944 0.1916 1.46 0.5040 0.5048 0.16 0.9262 0.9191 0.77
Cm −1.497 −1.491 0.40 −5.755 −5.717 0.66 −11.320 −11.261 0.53
Xcp 7.701 7.779 1.01 11.419 11.324 0.84 12.222 12.252 0.25
Tri-harmonic RBF
Cx 0.1853 0.1868 0.80 0.1860 0.1934 3.83 0.2029 0.2044 0.73
Cz 0.1921 0.1916 0.26 0.5035 0.5048 0.26 0.9189 0.9191 0.02
Cm −1.451 −1.491 2.68 −5.752 −5.717 0.61 −11.243 −11.261 0.16
Xcp 7.553 7.779 2.92 11.424 11.324 0.89 12.235 12.252 0.14

the parameter space. The Latin-Hyper-Cube sampling technique was not used in this case as this
would have entailed the generation of a new grid, each time the nose deflection is changed. All
of the computations were performed with an inflow Mach number of 3.0, a free-stream static
temperature of 110◦K and a Reynolds number of 9.5 million per foot.

3.2.1. Model predictions. For the first prediction a subset of the available data was employed. The
nose deflection was varied in the range [2◦,8◦], while angle of attack was varied between [0◦,6◦];
uniform intervals of 2◦ were used for both parameters. A POD was performed on the ensemble of
computational experiments. In this example all 16 of the available POD modes were utilized and
pseudo-continuous models were obtained using cubic-spline interpolation and a tri-harmonic RBF.
These two modelling methods were used as they offered good generalization ability. Predictions
are compared with high-fidelity simulations in Table V for a nose deflection of 5◦ at an angle of
attack of 1◦, 3◦ and 5◦. The comparisons are considered to be acceptable given the small number
of modes available within the POD.

As seen before, improving the locality of the data results in slightly improved predictions,
although in this case it is thought that the errors arise principally as a consequence of grid
deformation. This can be seen in Table VI in which predictions obtained from an ensemble with
the nose deflection varying between [4◦,6◦] in intervals of 1◦ and an angle of attack varying
between [0◦,6◦] in intervals of 2◦ are compared with CFD simulations. In addition to the previously
mentioned two interpolating techniques, a Gaussian kernel was considered as well. A comparison
between the results obtained by the cubic splines and the Gaussian RBF shows that indeed the
cubic splines provide a good generalization ability in this problem.

Improving the resolution of incidence � from 2◦ to 1◦ intervals provides further improvements in
the predicted data, Table VII. Tables V, VI and VII show that the cubic spline interpolation and the
tri-harmonic RBF are of comparable accuracy as expected, since the tri-harmonic RBF is, in fact,
a cubic spline. These results suggest that by using suitable kernels in a generalized linear model,
it is possible to approximate any function to an arbitrary degree of accuracy. Figure 9 compares
the axial pressure and density distributions obtained from the meta-model with CFD simulations
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Table VI. Comparison of model predictions with CFD simulations due to improved
data locality, 
=5◦ and �=1◦, �=3◦, �=5◦.


=5◦

�=1◦ �=3◦ �=5◦

Model CFD % Error Model CFD % Error Model CFD % Error

CSI
Cx 0.1881 0.1868 0.70 0.1918 0.1934 0.83 0.2051 0.2044 0.34
Cz 0.1941 0.1916 1.30 0.5041 0.5048 0.14 0.9278 0.9191 0.95
Cm −1.486 −1.491 0.30 −5.747 −5.717 0.54 −11.324 −11.261 0.56
Xcp 7.660 7.779 1.54 11.401 11.324 0.68 12.205 12.252 0.38
Tri-harmonic RBF
Cx 0.1906 0.1868 2.03 0.1894 0.1934 2.07 0.2087 0.2044 2.10
Cz 0.1961 0.1916 2.35 0.5033 0.5048 0.30 0.9236 0.9191 0.49
Cm −1.497 −1.491 0.38 −5.739 −5.717 0.38 −11.286 −11.261 0.22
Xcp 7.630 7.779 1.92 11.403 11.324 0.70 12.2185 12.2517 0.27
Gaussian RBF
Cx 0.1898 0.1868 1.61 0.1911 0.1934 1.19 0.2058 0.2044 0.68
Cz 0.1923 0.1916 0.37 0.5043 0.5048 0.10 0.9212 0.9191 0.23
Cm −1.431 −1.491 4.00 −5.750 −5.717 0.59 −11.282 −11.261 0.19
Xcp 7.441 7.780 4.37 11.402 11.324 0.68 12.247 12.252 0.04

Table VII. Comparison of model predictions with CFD simulations, 
=5◦ and �=2.5◦.

�=2.5◦, 
=5◦

Model CFD % Error

CSI
Cx 0.1901 0.1904 0.16
Cz 0.4160 0.4162 0.05
Cm −4.5013 −4.5072 0.13
Xcp 10.8197 10.8293 0.09
Tri-harmonic RBF
Cx 0.1901 0.1904 0.16
Cz 0.4159 0.4162 0.07
Cm −4.5003 −4.5072 0.15
Xcp 10.8212 10.8293 0.07
Gaussian RBF
Cx 0.1901 0.1904 0.16
Cz 0.4161 0.4162 0.02
Cm −4.5074 −4.5072 0.00
Xcp 10.8316 10.8293 0.02

at 0◦ and 180◦ azimuth angles. The agreement is generally excellent with the exception of the
shock intensity at the fin.

Figure 10 compares the circumferential pressure distributions at stations located 1, 3 and 10.5
calibres downstream of the nose. The agreement is generally good over most of the body, but
some small discrepancies are observed in the secondary flow separation and re-attachment at 10.5
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Figure 9. Comparison of predicted axial distribution of pressure and density with CFD simulations, 
=5◦
and �=2.5◦: (a) Windward and (b) Leeward.

calibres (Figure 10(d)). In Figure 11 predicted density contours are compared with CFD simulations
at two stream-wise locations. The first is located well downstream of the nose cylinder junction,
while the second is located at the trailing edge of the fins. This figure, together with Table VII
and Figures 9 and 10, suggests that the model provides an acceptable surrogate for the IMPNS
flow solver and illustrates the potential of the method. In this particular case the full CFD output
from the meta-model is obtained in 107 s of CPU time on a 3.3GHz processor. This compares
favourably to the 18 000 s of CPU time necessary for making one complete evaluation using the
CFD code. In case the CFD code is a time-marching one, the difference in CPU time would be
considerably higher. Consequently the meta-model becomes much more useful. In such case the
output from the meta-model could also be used to restart the computation and hence it would
assist in reducing the overall computational time of the CFD code.

4. CONCLUSIONS

A high-fidelity, low-cost aerodynamic model was presented for use in parametric studies of weapon
aerodynamics. The method employs a reduced-order model obtained from the POD of an ensemble
of CFD solutions. It has been shown that this procedure provides a data compression methodology
by retaining the most energetic modes while discarding the rest without any significant loss of
detail. Moreover, by using generalized linear models for a pseudo-continuous representation of the
projection coefficients describing the reduced-order model, predictions of parameter combinations
not in the original set of observations are made.
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Figure 10. (a) Body geometry and streamwise locations; (b) (c) (d) circumferential normalized pressure
distributions at 
=5◦ and �=2.5◦ ((b) x/D=1.0; (c) x/D=3.0; and (d) x/D=10.5).

Four different approaches to the construction of a response surface of the projection coefficients
were investigated, a linear regression-based method and three interpolation techniques employing
linear spline, cubic spline and RBFs. The computed data suggest that interpolation-based techniques
provide a significant advantage over the regression method. This is attributed to the fact that the
interpolation schemes pass through all of the sample points providing an improved representation
of local minima and maxima, while the global fit of the regression technique produces some
unnecessary smoothing. This observation is supported by studies of data localization that suggest the
regression method can provide similar accuracy to the interpolation schemes when employed over
a reduced parameter space. In general, the RBF interpolation offered the most accurate prediction.

The use of Latin Hyper-Cube sampling methods was found to offer improved accuracy for a
given number of sample points. For problems involving large numbers of parameters, the LHS may
provide a practical approach to reduce the number of samples required to populate the design space.
However, for problems involving geometric variation the LHS requires a means of automatically
generating high-quality grids. For this reason a more practical tool may incorporate a hybrid
approach, a design-of-experiment technique in which the geometry variables are prescribed at
specific levels, and an LHS technique that is used for other parameters.

The results of the study suggest that meta-models based upon POD of a small number of
computational experiments can provide a reliable low-cost high-fidelity tool. In contrast to many of
the modelling efforts reported in the literature, this model provides access to the full CFD output.
The current approach requires 107 s of CPU time on a 3.3GHz processor to compute the model
and make a single prediction; this compares favourably to the 18 000 s required for one evaluation
of the CFD code.
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x/D = 10. 5 x/D = xmax

x/D = 10. 5 x/D = xmax

(a)

(b)

Figure 11. Comparison of pressure and density contours, 
=5◦ and �=2.5◦:
(a) density contours (left—meta-model, right—Navier–Stokes) and (b) pressure

contours (left—meta-model, right—Navier–Stokes).
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NOMENCLATURE

�i j is the scalar or projection coefficient of the j th POD mode
�i j is the j th POD basis mode
m is the number of realizations or snapshots and POD modes
n is the number of grid points in a mesh
x is a vector of different parameter values
Y is a solution vector of primitive or conservative variables
f (x) computationally expensive analysis
f̃ (x) approximation to f (x)
r radial distance from a given centre point
�(r) a typical RBF
p(x) a polynomial of one degree less than the RBF �(r)
� angle of incidence

 nose deflection angle of the nose-controlled missile configuration
D mid-body diameter
M Mach number
Cx component of the aerodynamic force along the axis of the body
Cz component of the aerodynamic force normal to the axis of the body
Cm pitching moment acting on the body
Xcp centre of pressure coordinate along the body axis
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